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COMMENTARY

Pairwise interactions and the battle against
combinatorics in multidrug therapies
Kevin B. Wooda,b,1

Drugs are often used in combination to treat bacterial
infections, viruses, and cancer. Drug combinations
may exhibit increased potency, decreased dosage-
related side effects, and even the capacity to slow
the emergence of resistance. The increased efficacy
imparted by combining drugs—so-called drug “syn-
ergy”—has been a topic of fervent interest for decades
(1), while recent studies have also highlighted the
evolutionary impacts of counteracting (“antagonistic”)
combinations (2–4). The spectrum of potential drug–
drug interactions is rich and multifaceted, offering
the promise of optimized combination therapies
tailored to specific treatment objectives (5). Unfortu-
nately, the inherent flexibility of combination ther-
apy also presents a considerable practical hurdle:
the number of possible drug combinations grows
exponentially with the number of drugs, making ex-
haustive screening with even a modest number of
drugs intractable. In PNAS, Zimmer et al. (6) develop
a robust method for predicting the effects of multi-
drug combinations for microbial infections and can-
cer, potentially sidestepping the combinatorial
explosion that limits systematic design of combination
therapies.

Comprehensively testing the efficacy of N drugs at
D doses requires DN measurements, and this number
grows unwieldy for even a modest number of drugs.
For example, evaluating a 10-drug combination at 10
doses requires 10 billion measurements (Fig. 1). To
put this in perspective, consider that a high-throughput
screen capable of evaluating 105 drug combinations
per day—a rate on par with some large-scale research
facilities—would require more than 270 y to fully char-
acterize all possible drug dosages. In addition to the
overwhelming time cost, brute-force approaches are
practically limited by the cost of drugs and potential
scarcity of the biological samples.

A number of promising strategies have emerged to
combat this combinatorial explosion. As our molecular
and structural understanding of drug action and the
targeted intracellular signaling pathways continues
to mature, detailed computational models provide
an avenue for rapidly evaluating drug efficacy in silico

(7, 8). Unfortunately, the required mechanistic insight
is not always available, and these methods remain
fundamentally limited by the problem’s exponentially
growing complexity. Rather than relying on mechanis-
tic models, Zimmer et al. attempted to evade the com-
binatorial explosion by leveraging a striking property
commonly observed in many-body physical systems:
the behavior of the composite system can often be
explained by considering the aggregate behavior of
smaller, tractable subsystems. For example, the sta-
tistical properties of neural populations (9, 10), the
expression patterns of gene networks (11), the be-
havior of animal flocks (12), and even the voting ten-
dencies of the US Supreme Court (13) can be largely
explained by interactions between pairs of constitu-
ents—neurons, genes, birds, or justices. In physics
parlance, higher-order interactions can often be
decomposed—at least approximately—into a sim-
ple combination of lower-order interactions. The
simplification to pairwise interactions is particularly
significant, as the number of pairs grows quadrati-
cally—not exponentially—with N. In the context of
drug combinations, screening all pairwise combina-
tions of 10 drugs at 10 doses requires on the order of
103 measurements—less than a day with our hypo-
thetical high-throughput screen.

Indeed, several recent studies have indicated that
the effects of drug pairs may dominate features of the
multidrug response, including the inhibitory strength
of antiretroviral combinations (14), the dynamics of
proteins in cancer cells (15), promoter activity of bac-
teria (16), and calcium signaling in human platelets
(17). Perhaps most relevant, recent work in bacteria
demonstrated that the inhibitory effects of antibiotic
combinations could be predicted based on the effects
of the drugs in pairs (18). Collectively, these studies
highlight the promise of pairwise approximations for
predicting multidrug effects.

The study by Zimmer et al. (6) provides several in-
novative and fundamental advances over previous
work, potentially opening the door to widespread
practical application of pairwise approximations tomul-
tidrug treatments. First, they incorporate a pairwise
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approximation into a phenomenological dose–response model.
The model accounts for observed interactions between drug
pairs by assuming that each drug has the potential to rescale the
effective concentration of the other. Similar approaches have been
recently used to describe the effects of resistance-conferring mu-
tations on two-drug mixtures (2, 19). By extending their two-drug
model to N-drug combinations, Zimmer et al. leverage both the
power of the pairwise approximation as well as the inherent sim-
plicity of concentration rescaling. To illustrate the advantage of this
approach, consider the task of predicting the effects of a three-
drug combination, where the concentrations of the three drugs are
D1, D2, and D3, respectively. To make this prediction, the model
from Zimmer et al. incorporates not only the single drug (D1;D2;D3)
and pairwise (D1 + D2; D1 + D3; D2 + D3) measurements at these
concentrations but also potentially measurements at other doses.
Furthermore, their method allows one to predict the effects of dos-
age combinations even when the complete collection of single-
drug and pairwise measurements is not available. In essence,
their model exploits the inherent smoothness of dose–response
surfaces—which is naturally embedded in many pharmacology
models (1)—tominimize the effects of experimental noise andmiss-
ing data. As a result, they are able to apply their approach to new
combinations of anticancer drugs and significantly improve upon
previous approaches. Even more strikingly, they are able to esti-
mate the full N-drug response surface using only a small fraction of
the pairwise measurements, making this method ideal for optimiz-
ing therapies (Fig. 1). Using their estimate of ∼10 measurements
per drug pair, our hypothetical 10-drug screen would now be re-
duced to several hundred measurements—a task easily achievable
even for modest-sized academic laboratories. As an elegant proof of
principle, they optimize a combination of three antibiotics to achieve

growth inhibition comparable to single-drug therapy but with a four-
fold reduction in drug concentration (6).

The practical implications of robust, multidimensional strate-
gies for predicting drug combination effects are far-reaching.
These approaches represent an additional step toward individu-
alized, precision medicine—where, for example, infections are
treated with optimized combination therapies based on real-time
information about genetic and phenotypic composition of partic-
ular microbial populations. Interestingly, the results also raise the-
oretical questions at the interface of cell biology and statistical
physics. In many physical systems, such as a dilute gas, the dom-
inance of pairwise interactions intuitively follows from the fact
that interactions are spatially localized, making higher-order
interactions—for example, three-body molecular collisions—statisti-
cally unlikely. By contrast, in the context of drug combinations, in-
teractions often do not arise from direct molecular or chemical
interactions between drugs. Instead, drugs represent generalized
perturbations to the intracellular networks governing cell growth
and proliferation (see, for example, ref. 20). In this sense, drug inter-
actions stem from indirect coupling between multiple perturbations
to a complex network. As a result, the relative strengths of higher-
and lower-order interactions are not immediately clear, and eluci-
dating themechanisms underlying the functional dominance of drug
pairs—whether biochemical, biological, or statistical—remains
an open theoretical question. Nevertheless, the results from
ref. 6—and the remarkable success of pairwise approximations
for predicting the multidrug response across organisms—may
hint at evolved topological or statistical constraints on these
networks. These findings therefore have the potential to spawn
new research directions linking network theory, complex sys-
tems, and biomedicine.
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Fig. 1. The experimental demands of exhaustive combination screening increase dramatically with the number of drugs and doses (blue surface).
The pairwise dose model introduced in ref. 6 reduces the experimental burden by multiple orders of magnitude (red surface). For a screen of 10
drugs at 10 dosages, the number of required measurements is reduced from 1010 (top white circle) to roughly 102 (bottom white circle), allowing
for a quantitative prediction of the multidrug response surface (Right, schematic) that is robust to measurement noise and missing data.
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